

Software Supply Chain Risk Management:
From Products to Systems of Systems

Robert J. Ellison
Christopher Alberts
Rita Creel
Audrey Dorofee
Carol Woody

December 2010

TECHNICAL NOTE
CMU/SEI-2010-TN-026

CERT® Program
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library

CMU/SEI-2010-TN-026 | i

Table of Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Hardware and Software Supply Chains 1
1.2 Software Supply Chain Risk Analysis 1
1.3 Example: Stuxnet 2

1.3.1 Attack Analysis 2
1.3.2 Suppliers 3
1.3.3 Acquirers 3

1.4 Organization of Report 4

2 Attack Analysis 5
2.1 Attack Incentives and Enablers 5

2.1.1 Defects 5
2.2 Attack Surface 7
2.3 Attacker Intent 8
2.4 Risk Factors 9

3 Suppliers 11
3.1 Reduce Defects 11

3.1.1 Threat Modeling 12
3.1.2 Testing 12

3.2 Reduce Attack Targets 13
3.3 Example of Using Threat Modeling and Attack Surface Analysis 13
3.4 Reducing Defects and Targets: A Systems Perspective 13

4 Acquirers 15
4.1 Understanding What Can and What Should Be Controlled 15
4.2 Supplier Selection 16

4.2.1 Specific Software Products 17
4.2.2 Software Products Incorporated into a System 17
4.2.3 System Development and Integration 18

4.3 Acquirer Mitigations 19
4.4 Possible Tradeoffs 19
4.5 Limitations of Supply Chain Risk Management 21

5 Deployment and Operations 23

6 Summary 25

7 Next Steps 27

Bibliography 29

CMU/SEI-2010-TN-026 | ii

CMU/SEI-2010-TN-026 | iii

List of Figures

Figure 1: Software Supply Chain Components 2

Figure 2: Attack Analysis 5

Figure 3: Targeted Attack 9

Figure 4: Targeted Banking Attack 9

Figure 5: Suppliers 11

Figure 6: Acquirers 15

Figure 7: Supply Chain Factors for Acquisitions 16

CMU/SEI-2010-TN-026 | iv

CMU/SEI-2010-TN-026 | v

List of Tables

Table 1: CWE Weaknesses [MITRE 2010a] 7

Table 2: Attack Surface [Howard 2005] 8

Table 3: Levels of Assurance 18

CMU/SEI-2010-TN-026 | vi

CMU/SEI-2010-TN-026 | vii

Acknowledgments

A portion of the work was funded by the Global Cyber Security Management Branch of the
Department of Homeland Security’s National Cyber Security Division.

The Acquisition Support Program at the Software Engineering Institute supported an internal
supply chain workshop and the writing of this report.

CMU/SEI-2010-TN-026 | viii

CMU/SEI-2010-TN-026 | ix

Abstract

Supply chains are usually thought of as manufacturing and delivering physical items, but there are
also supply chains associated with the development and operation of a software system. Software
supply chain research does not have decades of evidence to draw on, as with physical-item supply
chains. Taking a systems perspective on software supply chain risks, this report considers current
practices in software supply chain analysis and suggests some foundational practices. The product
and supplier selection criteria for system development depend on how a product is used in a
system. While many of the criteria for the selection of product suppliers and system development
contractors are the same, there is also a significant difference between these kinds of acquisitions.
Product development is completed in advance of an acquirer’s product and supplier assessment.
There is no guarantee that current supplier development practices were used for a specific
product. For custom system acquisitions, acquirers can and should actively monitor both
contractor and product supply chain risks during development. This report suggests contractor and
acquirer activities that support the management of supply chain risks.

CMU/SEI-2010-TN-026 | x

CMU/SEI-2010-TN-026 | 1

1 Introduction

We usually think of supply chains as manufacturing and delivering physical items, but there are
also supply chains associated with the development and operation of a software system. Software
supply chains include supply chains for physical components, integrated components such as
network routers, and software. A supply chain for a commercial software product includes the
product development organization and their suppliers. The supply chain for a custom-developed
software system can include the prime contractors, subcontractors, and supply chains for the
commercial products used.

The growing government reliance on complex software supply chains to deliver military, civil,
and intelligence capabilities has increased software assurance concerns. Software supply chain
participants have become distributed internationally. This complexity makes it more challenging
than ever for acquirers to understand, monitor, and manage supply chain products and processes.

1.1 Hardware and Software Supply Chains

Analysis of hardware supply chains draws on decades of experience and has an established
framework for research and analysis. Such a framework cannot exist for software supply chains
until a baseline of experience and data exists. Physical and software supply chains share a number
of risks such as the business risks associated with a supplier’s operations, with delivery on
schedule and within costs, and with delivered items meeting specifications. For the shared items, a
software supply chain analysis framework can draw on experience with physical supply chains.

There is an important difference between acquisitions for software and those for hardware or
integrated components such as routers. A software product is typically delivered as a single item
that is then redistributed within an organization. Issues of supply chain integrity apply to that one
delivery. Hardware and integrated components involve multiple deliveries of the same item, and
supply chain integrity must be verified for each delivery. Hardware specifications can be verified
on delivery in most instances, but software functionality cannot. A software component may
exhibit undesired behavior when confronted with conditions not considered during development,
raising a security concern.

1.2 Software Supply Chain Risk Analysis

A software supply chain can affect all aspects of a delivered system. On-time delivery and costs
often get the most attention, but the most serious risks are associated with system assurance. Does
the system behave as expected? This report considers software behavior that is associated with
security.

Software supply chain risk analysis for security considers three components as shown in Figure 1.
• attack analysis: factors that lead to successful attacks

• supplier: capability to limit product attributes that enable attacks

• acquirer: tradeoff decisions (desired usage and acceptable business risks)

− business risk assessment—identify attack enablers and possible business risks

− supplier/product assessm
manage them

Figure 1: Software Supply Chain Co

1.3 Example: Stuxnet

A recent incident exemplifies the
management (SCRM). In July 20
control equipment made by Sieme
system managed a physical system
not attempt to compromise contro
thousands of computers with the o
administrators for Siemens contro
control systems [Mills 2010].

1.3.1 Attack Analysis

Attack Incentives: Defects

A successful cyber attack typicall
multiple defects, including four p
system. Incidents that exploit unk
because any deployed malware or
targeted vulnerabilities.

The Stuxnet attackers had detailed
that changed how the physical pro
possible represents a second softw
the control system was not suffici
in the process control code.

1 In this report, “malware” refers to s

CMU/SEI-2010-

ment in terms of attack enablers and capability of supplie

omponents

kinds of analysis that support software supply chain risk
10, malware1 called Stuxnet targeted specialized industri
ens. The malware enabled the attacker to modify how th
m, such as one for water treatment. The designers of Stux
ol systems directly. Rather Stuxnet infected hundreds of
objective of compromising a few that were used by syste
ol systems, thus enabling the malware to compromise tho

ly exploits defects of some kind. The Stuxnet example in
previously unknown vulnerabilities in the Windows opera
known weaknesses like these are called “zero-day attacks
r virus detection software would not have been aware of

d knowledge of Siemens’ software and injected their ow
ocesses were managed by the control system. That this w
ware and system administration weakness. The configura
iently monitored, so the operational unit was unaware of

software designed with malicious intent.

-TN-026 | 2

er to

k
ial
e control
xnet did

em
ose

nvolves
ating
s”
f the

wn code
was
ation of
f changes

CMU/SEI-2010-TN-026 | 3

Connectivity

To avoid detection, the attack did not use the corporate networks to modify the control system
software. Instead trusted administrative personnel were used as unknowing transfer agents.

Internet access and defects in Windows or in application software were used to compromise
computing resources belonging to the trusted administrators. The transfer to the control software
was likely done via USB drives used by system administrators. That such a transfer was possible
is also a system weakness. The risks of using the same computing equipment for general use
(internet access) and critical administrative activities had either not been considered or not
adequately mitigated.

Consequences

The malware could inject code into the control system that affected the physical processes being
managed, which could sabotage factory equipment [McGraw 2010b, Richmond 2010]. Analysis
of those consequences should consider attacker motivations. In this case, the sophistication of the
malware, known as Stuxnet, led to speculations that it was staged by a government or
government-backed group, which suggested an attack that targeted specific usage or
organizations.

1.3.2 Suppliers

Reduce Targets

Control systems such as the ones targeted by the Stuxnet attack are used to control water,
electricity, and nuclear operations. To be adapted to the acquiring organization’s requirements,
control systems must be extensible. The acquiring organization implements such extensibility by
writing the code that controls the physical processes. This kind of extensibility is a frequent target,
and in this case, an attacker wrote and installed their own code that adversely changed the
behavior of existing control functions. The potential severity of such exploits requires that
suppliers give special attention to authorizations, authentications, and auditing for installing such
code.

Reduce Defects

Discussions of national cyber threats before Stuxnet had brought up the risks of compromised
control systems. In practice, however, mitigating their weaknesses had not been a high priority for
control system suppliers, and hence the risk of malware corrupting a configuration had not been
considered. A classic tradeoff for suppliers is between costs and extensive failure analysis. In this
case, the attack exploited a number of items not controlled by Siemens, such as Windows
vulnerabilities and the compromise of administrator computing devices. Given resource
constraints, a generic weakness for system development is that developers do not consider all
operational software risks, which attackers then try to exploit.

1.3.3 Acquirers

Supplier Selection

While the likelihood of compromising control systems had been the subject of speculative
discussions, control system suppliers and products were likely assessed on provided functionality

CMU/SEI-2010-TN-026 | 4

and on system attributes such as reliability and extensibility. The appearance of Stuxnet, the first
instance of a control system exploit, introduces new threats with significant consequences, and it
will change selection criteria.

Possible Tradeoffs

There are numerous examples of attacks that exploit compromised end-user computing devices
and software. End-user devices such as cell phones can be difficult to control, and software such
as web browsers increase attack opportunities. In some instances the advantages of better
connectivity outweigh the risks. The connectivity issues in the Stuxnet case were internal to the
organization. However, there is increasing network connectivity among the participants in the
electrical grid, which raises the risk that the consequences of a supply chain risk at one electrical
grid participant will adversely affect others.

Operations

Control system operators should not assume that control system suppliers quickly mitigate these
kinds of attacks. A new attack-induced failure could require a partial redesign. In an instance such
as the Stuxnet attack, an operational unit would have to tighten system administrative and
maintenance procedures to mitigate the risks associated with compromised USB drives.

1.4 Organization of Report

The intended audience for this report includes those developing techniques for software supply
chain analysis, those considering the issues that should be addressed, and leading-edge acquirers
who seek to identify applicable software supply chain risks that should be addressed.

Section 2 expands on attack analysis. A successful cyber attack typically exploits a mistake. This
report concentrates on the inadvertent introduction of exploitable software defects during software
system development, which at this time is a significant risk. Section 3 considers supplier
capabilities for mitigating supply chain risks. A supplier needs to do a product risk assessment for
attributes that might enable an attack. The discussion of desired supplier capabilities describes
several development practices. Supplier capability should be measured not by the application of
these specific practices but by the application of practices that produce equivalent results. An
acquirer must consider both attack enablers and supplier capabilities as described in Section 4.
Operational and supplier assessments depend on the type of acquisition, for example, user
productivity software, system components, or custom system development. Sections 2 through 4
concentrate on software supply chain risks associated with an initial acquisition. The Stuxnet
incident, however, occurred after deployment. Section 5 discusses how software supply risk
management should continue into deployment and be integrated into operations. Finally Section 6
provides a summary, and Section 7 discusses possible next steps for this analysis.

2 Attack Analysis

Figure 2 shows the attack analysi

Figure 2: Attack Analysis

2.1 Attack Incentives and En

2.1.1 Defects

Intentionally Created Defects

A successful cyber attack typicall
usually exploits a fault in the syst
make unauthorized software chan
supports development may be com
example, in 2006 a few Apple vid
machine used for quality assuranc

Many well-understood practices,
it harder or riskier for an attacker
Assurance Forum for Excellence
supply chain integrity [Simpson 2
be improved with authentication,
computing devices from original
the substitution of counterfeit com
configuration management during
malicious code.

Currently, reducing the risk of ma
depends on maintaining supply ch
the Defense Science Board Task F
provides a good summary of the i

The problem of detecting vu
the horizon. Once malicious
to be detected by subsequent
commercially to test code fo

CMU/SEI-2010-

s part in the software SCRM framework.

ablers

ly exploits a mistake. An intentional insertion of maliciou
tem chain. Poor vetting of employees may enable an insi
nges that create an exploitable defect. Computing softwar
mpromised by malware because of poor administration. F
deo iPods with malware were sold [Apple 2006]. A comp
ce had introduced the malware.

often drawn from management of physical supply chain
or supplier to compromise supply chain integrity. The S
in Code (SAFECode) has initiated an effort to address so

2009]. The security of a software exchange between parti
signing, and encryption. Having an audited delivery path
equipment manufacturers (OEMs) to the acquirer can mi

mponents. Using vetted employees and strong software
g development reduces the risk of an intentional insertion

aliciously inserted code, which is extremely difficult to f
hain integrity. The following statement from the 2007 Re
Force on Mission Impact of Foreign Influence on DoD S
issues.
lnerabilities is deeply complex, and there is no silver bul
 code has been implanted by a capable adversary, it is u
t testing. A number of software tools have been develope
r vulnerabilities, and these tools have been improving ra

-TN-026 | 5

us code
der to
re that
For
promised

s, make
Software
oftware
ies can
h for
itigate

n of

find,
eport of
Software

llet on
unlikely
ed
apidly in

CMU/SEI-2010-TN-026 | 6

recent years. Current tools find about one-third of the bugs prior to deployment that are ever
found subsequently, and the rate of false positives is about equal to that of true positives.
However, it is the opinion of the task force that unless a major breakthrough occurs, it is
unlikely that any tool in the foreseeable future will find more than half the suspect code.
Moreover, it can be assumed that the adversary has the same tools; therefore, it is likely the
malicious code would be constructed to pass undetected by these tools. [DoD 2007]

Inadvertently Created Software Defects

The potential intentional insertion of malicious code at some point in a geographically distributed
supply chain presents challenges. However, a much higher risk at this time is an inadvertent
exploitable software design and coding error, made by one of the contributors to a supply chain,
in the delivered product.

Such exploitable software defects are widespread. On September 22, 2010, Veracode released the
second version of their semiannual State of Software Security Report, which draws on the analysis
of billions of lines of code and thousands of applications [Veracode 2010]. Their overall finding is
that most software is very insecure. Regardless of software origin, 58 percent of all applications
did not achieve an acceptable security score upon first submission to Veracode for testing.
Veracode also tested the software for the 2010 CWE/SANS top 25 most dangerous software
errors [MITRE 2010a]. Those weaknesses are well known, easily remedied, and can be identified
by commercially available testing tools. Yet 70 percent of the internally developed software and
62 percent of commercially developed software submitted to Veracode did not achieve acceptable
security scores when initially tested for those specific weaknesses.

An attack typically tries to put a software system into a state not anticipated by the developers.
For example, even behavior well specified in software design can be changed if the system
executes attacker-supplied code. Software weaknesses can enable an attacker to change system
behavior so as to
• access information not normally available

• create circumstances that lead to termination of a software service (denial of service)

• execute attacker-supplied software

Software defects frequently occur because a design did not consider adverse operational
conditions, particularly those associated with increased connectivity and a more complex
operational environment. For example, the designers of wireless air pressure monitors for
automobiles did not consider input validation, authentication, or encryption. They did not
anticipate that those monitors could be accessed by devices external to the automobile that spoof
input to cause a false low pressure warning. One supplier’s monitor was even damaged [Schwartz
2010].

With an objective to increase developer awareness of common vulnerabilities and attack
strategies, as well as how to prevent them, the Common Weakness Enumeration (CWE) describes
more than 600 types of software design and coding weaknesses that have enabled cyber attacks
[MITRE 2010c]. Table 1 lists some of the CWE/SANS top 25 most dangerous software errors
drawn from the CWE. The Common Attack Pattern Enumeration Classification (CAPEC)
describes common methods attackers use to exploit vulnerabilities [MITRE 2010b]. In addition,

CMU/SEI-2010-TN-026 | 7

the U.S. government has sponsored considerable foundational work to create supporting
information, standards, and formats for communicating software vulnerability data [NIST 2010b].

Table 1: CWE Weaknesses [MITRE 2010a]
Vulnerability Potential Consequence

Cross-site scripting—Malware is downloaded as part
of a web page.

Information exposure through an error message—
provides implementation and configuration details

SQL injection Buffer access with incorrect length value

Buffer copy without checking size of input Improper check for unusual or exceptional conditions

Incorrect calculation of buffer size Improper validation of array index

Operating system command injection—Submitted
input is used in parameters in the execution of an
external program.

Path traversal—Submitted file name includes “../”
which changes directory.

All too often an attack succeeds because a software routine does not properly validate data input.
A good example of that is a Structured Query Language (SQL) injection, which has occurred in
both custom-developed and commercially supplied software. The cause of SQL injections is well
known, and there are several techniques that can be applied to eliminate the vulnerability. Yet it
ranked second on the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors list
[MITRE 2010a].

In the following example, information is accessed from a database that uses SQL. Assume an
application displays an employee name and salary after a user enters an employee ID. In the
typical implementation, an SQL query is constructed by inserting the user-submitted value into an
SQL query template. For example, if the user entry is 48943, the query submitted to the database
server might be

select Name, Salary from Employees where EmployeeID = 48943

A key characteristic of this example is that user input values are incorporated into a string that is
interpreted by the server. Such circumstances raise a red flag for knowledgeable developers. In an
SQL injection, an attacker’s input includes SQL command elements. For this example, consider
the input 48983 | (1 = 1); in SQL the symbol “|” is the logical OR. This query returns
employee records where the EmployeeId = 48983 or where 1 = 1, and since the latter is always
true, all employee names and salaries are displayed. SQL injections have been used in many of
the cyber attacks that gained access to a retailer’s database with credit card data.

2.2 Attack Surface

Attackers look for system characteristics that have previously been successfully exploited, which
supplies an intuitive notion of attackability. For example, a system with an SQL database may be
subject to an SQL injection. An attacker seeks targets with high attackability. Can an acquirer use
a similar measure to identify software products with low attackability? Howard proposed focusing
on the software features that provide opportunities for attack, which he called the attack surface
[Howard 2003]. For example, attacks frequently exploit poor input validation. Hence software
components that accept user input are part of the attack surface. An attack surface also includes
so-called enablers, which can be components such as an email service, features such as run-time
configuration changes, or technologies used to implement a feature. Table 2 shows the elements
of an attack surface as used in this report.

CMU/SEI-2010-TN-026 | 8

Table 2: Attack Surface [Howard 2005]
Targets data resources or processes desired by attackers (a target could be a web

browser, web server, firewall, mail client, database server, etc.)

Enablers processes and data resources used by attackers to reach a target (e.g., web
services, a mail client, XML, JavaScript, or ActiveX2)

Channels and Protocols inputs and outputs used by attackers to obtain control over targets

Access Rights constraints intended to limit the set of actions that can be taken with respect to
data items or functionality

For the SQL injection example above, the target is the database, the primary enabler is the use of
SQL as the interface between a user-input component and the database, and the channel is the
communications link between a browser and the application software that accepts input.

Web browsers by design are extensible, and such extensibility creates large attack surfaces. They
can be used for reading email, purchasing, editing documents, and administrating networks. That
extensibility is achieved by downloading application-specific executable software (e.g.,
JavaScript) in addition to data from a web server. Asynchronous JavaScript and XML (AJAX) is
a combination of two languages that provides a means of exchanging data with a server and
avoiding downloading a full webpage by updating only the parts of a web page that have changed.
Attackers want the user to execute their code, and the same features that enable browser behavior
at run-time can also be used maliciously to download malware or retrieve confidential user data.
HTML5, with over 300 pages of specifications for features like video playback and drag-and-
drop, increases the attack opportunities.

PDF file readers have had high attackability. The PDF attack surface includes the language
specification of a clickable link that can be used by an attacker to execute an external program. In
2010, most PDF file readers reduced their attack surface by implementing a safe mode in which
that capability to execute external programs was turned off by default.

2.3 Attacker Intent

In many instances the objective of an attack that targets an end-user is to access personal
information such as credit card data or to use that individual’s computing resources to distribute
spam email or launch a distributed denial-of-service attack against another specific target. These
kinds of attacks target a large community of users.

A specific exploit can also be a step in a larger attack, and how an exploit is used depends on the
overall attack objective. An objective in the SQL injection example could be data access.
However, compromising site users has occurred as part of a larger attack. As an example, assume
a website displays product information and that a web page is constructed based on the user query
by retrieving appropriate product information from an SQL database. An SQL injection
vulnerability might enable an attacker to modify database entries so that a user query results in the
downloading of malware along with product data. A website that does not block such downloads
has a cross-site scripting vulnerability. The site is unintentionally distributing externally written
scripts.

2 Mechanisms such as JavaScript or ActiveX give the attackers a way to execute their own code.

Compromising an end-user devic
attack targeted Google in Decemb
team found a new vulnerability in
malware onto the laptop of a Goo
website. In a series of steps, the a
user’s Google access rights to vie

Figure 3: Targeted Attack

A variant of this approach has bee
typically accounts for small comp
cases the first step is to comprom
installed, as in the Google examp
malware in many of these instanc
session authorized for transaction
pages and modifies them before r
typically sends a page that notifie
delay, the attacker executes multi
those transactions in response to b

Figure 4: Targeted Banking Attack

2.4 Risk Factors

Several factors affect the occurren
those risks. Expanded network co
among systems can increase the e
in-time inventory system for a ma
A system for a large supplier has
organizations that handle transpor

CMU/SEI-2010-

e can also occur in an organization-specific attack. One s
ber 2009 and is illustrated in Figure 3. In this instance, a
n Internet Explorer Version 6 that enabled them to downl
ogle employee when he accessed an attack-team configur
attackers eventually used that initial browser vulnerability
ew sensitive Google source code.

en used to fraudulently withdraw money from bank acco
panies or nonprofit organizations such as school districts

mise a computer used for bank transactions. The malware
le, when a web browser accesses a compromised site. Th

ces has been very sophisticated. The user logs in to create
ns. The malware that had been installed intercepts the ban
relaying them to the user, as shown in Figure 4. The malw
es the user of a slight delay in processing. During this so-
iple transactions to transfer funds to third parties and con
bank queries.

nce of supply chain risks and the ability of an acquirer to
onnectivity and increased interoperability and dependenc
exposure of a system to adverse conditions. For example,
anufacturer or retailer establishes interfaces to supplier sy
interfaces to their purchasers, to their manufacturers, and
rt. A risk for retailers, manufacturers, and suppliers is tha

-TN-026 | 9

such
Chinese

load
red
y and the

ounts,
. In these
is likely

he
e a
nk’s web
ware
-called
nfirms

o manage
cies
, a just-
ystems.
d to
at one of

CMU/SEI-2010-TN-026 | 10

the other participating systems has been compromised. The bank in the bank-fraud example has
this risk. Identifying possible actions has to start with a design assumption that the other parties
may have been compromised. In the bank-fraud example, such an assumption would lead to a
design decision to use an independent communications channel for confirmations and not use the
potentially compromised communications channel that submitted the transactions.

End-user software has always been a target for attackers. A large user community increases the
likelihood of success. When the primary medium of data exchange was a floppy disk, an attacker
might have used a Microsoft Word or Excel macro as malware. In 2010 the web is the dominant
medium of data exchange, and web pages are used to install malware. Increased end-user
connectivity and sophisticated end-user applications increase the likelihood of end-user device
compromise. In the bank fraud example, the customer computer was compromised, and in the
Google example, one of the company’s laptops had been infected by malware. In both instances,
the end-user devices had been involved in other computing activities with inadequate controls.

3 Suppliers

Figure 5 shows the supplier’s por

Figure 5: Suppliers

3.1 Reduce Defects

One positive trend is that applicat
Microsoft’s publication of their S
starting point for other efforts [Ho
security initiatives are underway i
software vendors, the U.S. Air Fo
industry-led nonprofit organizatio
assurance methods, published a re
the first version of The Building S
2010a].3 The Software Assurance
sponsorship of the Department of
released several relevant documen
to the Capability Maturity Model®

Open Web Applications Security

3 BSIMM was created from a survey

considered to be the most advance
(4), independent software vendors
to be identified include Adobe, The
QUALCOMM, and Wells Fargo.

4 https://buildsecurityin.us-cert.gov/s

5 https://buildsecurityin.us-cert.gov/s

® Capability Maturity Model and CMM
Mellon University.

CMU/SEI-2010-T

rtion of a software SCRM framework.

tion security is receiving increased commercial attention
Security Development Lifecycle (SDL) in 2006 served as
oward 2006]. Today, over 25 large-scale application soft
in organizations as diverse as multinational banks, indep

orce, and embedded systems manufacturers. SAFECode,
on that focuses on the advancement of effective software
eport on secure software development [Simpson 2008]. I
Security in Maturity Model (BSIMM) was published [Mc
e Processes and Practices Working Group,4 operating und
f Homeland Security’s National Cyber Security Division
nts, including a Process Reference Model for Assurance5

® Integration for Development (CMMI®-DEV). In additi
Project (OWASP) has developed a Software Assurance

y of nine organizations with active software security initiatives that th
ed. The nine organizations were drawn from three verticals: financia
(3), and technology firms (2). Those companies among the nine wh

e Depository Trust & Clearing Corporation (DTCC), EMC, Google, M

swa/procwg.html

swa/downloads/PRM_for_Assurance_to_CMMI.pdf

MI are registered in the U.S. Patent and Trademark Office by Carne

TN-026 | 11

.
a
tware
pendent

an
e
In 2009
Graw
der the
, has
5 linked
ion, the
Maturity

he authors
al services
ho agreed
Microsoft,

egie

https://buildsecurityin.us-cert.gov/s
https://buildsecurityin.us-cert.gov/s

CMU/SEI-2010-TN-026 | 12

Model (SAMM) for software security.6 Finally, the Build Security In (BSI) website7 contains a
growing set of reference materials on software security practices.

While suppliers’ software development practices may differ, developers at the leading edge of
secure software production agree that secure development practices must be based on threat and
risk analysis. A threat refers to an individual or organization that is motivated to compromise a
site, while risk is the combination of the compromise’s impact and the likelihood that an attacker
could exploit the software. A supplier must consider the attack enablers that are applicable to its
products. For example, a database supplier should consider both threats and risks. A database
often stores financial data and could be the target of threats from organized crime or from
insiders. Some threats will have access to the skills and resources necessary for a sophisticated
attack. A supplier’s software risk analysis has to evaluate their product’s resistance to well-
resourced attackers. Threat and risk analysis can enable acquirers and suppliers to target a small
number of software attributes and focus SCRM resources accordingly.

3.1.1 Threat Modeling

This section focuses on the desired results of software development practices. Threat modeling is
a good example of a systematic approach to determining an application’s security model during
development, and it coordinates efforts among architects and developers to understand threats at
design time and throughout construction [McGovern 2010]. Even though the technique is called
“threat modeling,” the objective is to analyze risks and mitigations rather than to model attacker
behavior such as motivations and available resources. As applied to software development, threat
modeling is a part of Microsoft’s SDL [Howard 2006, Swiderski 2004]. Stephen Lipner has
designated it as the most important part of the Microsoft SDL [Geer 2010]. Application of the
technique has matured sufficiently that it can be more widely practiced [Steven 2010].

Threat modeling in this report is considered a general-purpose activity that can be applied to
systems and workflows in addition to software. Threat modeling incorporates detailed flow
analysis. For software, the analysis could consider how one or more data flows or user scenarios
among components could be compromised. At the systems level, the first application might be to
workflows that involve both people and data. The analysis identifies critical business assets. For
software, a detailed walkthrough of a data flow allows consideration of the deployed
configuration and expected usage, identification of external dependencies such as required
services, analysis of the interfaces to other components (inputs and outputs), and documentation
of security assumptions and trust boundaries, such as the security control points. The analysis of
data that includes access to an SQL database should either verify the application of known SQL
injection mitigations or recommend one. The analysis of usage scenarios supports business
decisions by linking threats to business assets. Such a walkthrough can consider adversary
motivations, such as the criticality of the data being handled, in addition to the technical risks.

3.1.2 Testing

Increased attention to application software security has influenced security testing practices. All
of the organizations initially interviewed for the Building Security In Maturity Model [McGraw

6 http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model

7 https://buildsecurityin.us-cert.gov/bsi/home.html

http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
https://buildsecurityin.us-cert.gov/bsi/home.html

CMU/SEI-2010-TN-026 | 13

2010a] do penetration testing, but there is also increasing use of fuzz testing. Fuzz testing creates
malformed data and observes application behavior when such data is accepted. An unexpected
application failure due to malformed input is a reliability defect and possibly a security defect.
Fuzz testing has been used effectively by attackers to find weaknesses. For example, in 2009 a
fuzz-testing tool generated XML-formatted data that revealed an exploitable defect in widely used
XML libraries. At Microsoft, fuzz testing finds about 20 to 25 percent of security defects in code
not subject to secure coding practices [Howard 2006].

3.2 Reduce Attack Targets

Attack surface analysis is described in Section 2.2. During development, attack surface analysis
can focus attention on those software aspects that are of greatest concern for security risks. For
each element of a documented attack surface, known weaknesses and attack patterns can be used
to mitigate those risks. Well-partitioned code isolates features, reducing the attack surface and the
amount of code to be evaluated for threats and vulnerabilities. Such analysis also can identify the
attack opportunities that could require additional integration mitigations beyond those provided by
a specific product that is used in the system.

3.3 Example of Using Threat Modeling and Attack Surface Analysis

The SQL example is a classic instance of the application of threat modeling and attack surface
analysis. A dataflow analysis would consider the effects of the acceptance of invalid data and of
identified possible mitigations.

For the bank fraud example, an effective application of threat modeling and attack surface
analysis would have identified the security assumption of a trusted user and analyzed the
consequences by considering scenarios with compromised clients.

Threat modeling for the Google example could take several forms. The laptop in question was
running an older version of Internet Explorer, but the exploits used zero-day vulnerabilities (i.e.,
they had not been used before). From that perspective the risks of using an older version of IE
might be less significant than the effects of zero-day vulnerabilities.

Threat modeling and attack surface analysis could be applied in general to portable devices. The
ever-increasing attack surface associated with better connectivity, applications that use that
connectivity, and sophisticated malware that targets such connectivity require that threat modeling
for internal systems considers scenarios with compromised user computing devices. Such
scenarios should not consider how a computing device was compromised but rather should
analyze possible effects of such events.

3.4 Reducing Defects and Targets: A Systems Perspective

Vulnerability reports and patches single out a specific product. This may give too much
importance to the value of individual supplier and product evaluations. For a software system
acquirer, a system perspective is required to provide the necessary context for risk analysis and
evaluation of commercial products and custom-developed software components that compose the
system.

CMU/SEI-2010-TN-026 | 14

A software system’s supply chain risks are the aggregate of the risks of the system’s software
components. This includes risks associated with custom software development and integration,
with the commercial software products used, and with any use of legacy components.8 However,
vulnerability risk analysis depends on knowing how that software system is used. Usage is
derived from the role of the system that incorporates that software component, how the
component is used in the system, and the business criticality of the system.

System risk analysis must consider the emergent behavior of the integrated components. Have
additional risks been created during integration? No component is risk free. A commercial
product might be used in an operational environment subject to greater threats than were
considered by its developers. Has component integration considered such circumstances? System
integration is frequently outsourced. Hence integration contractors are part of a supply chain, and
weaknesses in their integration and SCRM capabilities contribute to the overall set of system
supply chain risks. The same risks occur with the use of an internal integration team. Hence
supply chain risk analysis should consider both external and internal contributors.

8 In this report, “legacy” refers to previously developed custom software and deployed commercial software.

4 Acquirers

Figure 6 shows an acquirer’s port

Figure 6: Acquirers

Recent activity has addressed acq
to improving acquirer practices, th
released a draft interagency repor
Agency Information Systems [NIS
Department of Defense’s Softwar
in Acquisition: Mitigating Risks to
and due-diligence questionnaires
also developed top-level recomm
on integrity controls for supply ch
added the Trusted Technology Fo
proposal criteria and procurement
reference model for assuring softw
collaborative effort with the Carn
and other organizations, has estab
resources for building security int

4.1 Understanding What Can

The most critical acquirer require
how they may be managed. Figur

9 http://www.opengroup.org/ttf/

® Carnegie Mellon is registered in the

10 https://buildsecurityin.us-cert.gov/b

CMU/SEI-2010-T

tion of a software SCRM framework.

quirers’ management of software supply chain risks. With
he National Institute of Standards and Technology recen
rt, Piloting Supply Chain Risk Management Practices for
ST 2010a]. The Department of Homeland Security (DHS
re Assurance Working Group has published Software Ass
o the Enterprise, which contains sample acquisition lang
[Polydys 2008]. The Software Assurance Working Grou
endations [DHS 2009]. SAFECode has published white
hains [Simpson 2008, 2009]. In addition, The Open Grou
orum,9 and OWASP has developed recommended reques
t language [OWASP 2010]. An effort is underway to bui
ware supply chains [Boyson 2009]. Finally, the DHS, in

negie Mellon® University’s Software Engineering Institut
blished the Build Security In (BSI) website, featuring a v
to every phase of acquisition and development.10

n and What Should Be Controlled

ement is an understanding of the applicable attack enable
re 7 shows how the type of acquisition can affect acquire

e U.S. Patent and Trademark Office by Carnegie Mellon University

bsi/home.html

TN-026 | 15

h respect
ntly
r Federal
S) and
surance

guage
up has
papers
up has
st-for-
ild a
a
te (SEI)

variety of

rs and
er

.

http://www.opengroup.org/ttf/
https://buildsecurityin.us-cert.gov/b

controls. Custom-developed softw
control risks during development.
commercially available software,
not use a specific product. The ow
control over or knowledge of secu
the effects of two important trend
among systems and reduced acqu
system components.

Figure 7: Supply Chain Factors for A

4.2 Supplier Selection

For an acquirer, one SCRM objec
compromise operational objective
[Veracode 2010], deploying softw
1, adds risk to an already risk-pro
responsibility is to select supplier
that apply practices, such as those
acquirer understands the limitatio

Currently, a significant challenge
level required for the acquirer’s b
criteria to reduce supply chain ris
commercial products that can be c
and financial services companies
among the best raw security quali
their business criticality [Veracod

11 This report assumes that a system

own right, and that they are separa
independent of the system of syste

CMU/SEI-2010-T

ware systems provide the acquirer with the ability to mon
. However, systems are increasingly constructed by integ
in which case the only controls might be to accept the ri

wner of a system that participates in a system of systems1

urity risks of the other members [Maier 1996]. Figure 7 s
ds: higher operational risks associated with increased con
uisition controls with increased use of commercial softwa

Acquisitions

ctive is to increase assurance that cyber attacks will not
es. Given the security testing failures reported by Veraco
ware with unknown or unmitigated defects, like the ones
one scenario. Hence the most critical acquirer SCRM
rs that are knowledgeable of the risks discussed in Sectio
e in Section 4, that mitigate those risks. It is also essentia
ons of SCRM as discussed in Section 4.5.

 is matching supply chain selection criteria with the assu
business criticality. The use of more stringent supplier sel
sks can increase the cost of development or reduce the nu
considered. Yet Veracode noted that while banking, insu
had taken proactive steps and their submitted software h
ity scores, their level of security was still not commensur
de 2010].

 of systems is composed of systems that are independent and usef
ately acquired and integrated but maintain a continuing operational
ems.

TN-026 | 16

nitor and
grating
isks or
11 has no
shows

nnectivity
are as

ode
in Table

on 3 and
al that an

urance
lection
umber of
urance,
had
rate with

ful in their
existence

CMU/SEI-2010-TN-026 | 17

4.2.1 Specific Software Products

Most acquiring organizations tend to make single software product acquisitions for end-user
productivity software, such as document editors and web browsers, or for integrated systems, such
as the Siemens control system or database management systems. Interoperability certainly exists
among these products and other systems, but the primary acquisition driver is functionality.

4.2.2 Software Products Incorporated into a System

An acquirer has very little knowledge of the development practices used for a commercial
product, and at this time no public certification of a supplier’s practices is available. Some
organizations do not deploy software products that fail a test suite such as that used by Veracode.
At noted in Section 3.1, developers at the leading edge of secure software production agree that
secure development practices must be based on threat and risk analysis. An assessment of a
product development organization would look for
• a development staff that is knowledgeable in exploitable software weaknesses and well

trained in mitigating those risks

• physical, personnel, and industrial security measures

• strong configuration management of development facilities

• careful vetting of employees

• assessment and monitoring of their own suppliers and subcontractors

• attack surface analysis and threat modeling or equivalent practices to identify possible
software weaknesses and the strength of mitigations needed given the software’s intended
operational use

• verification that risk mitigation and remediation actions are sufficient, that testers are
knowledgeable of applicable software weaknesses and mitigations, and that those items are
incorporated into the test plan

Unacceptable risks identified during a product assessment can lead to a rejection, to the
application of operational controls that reduce those risks to an acceptable level, and in some
instances to a product revision that has acceptable risks.

Product assessment criteria must reflect the criticality of usage and the level of assurance
required. There are no accepted definitions for assurance levels. A general characterization of
such levels appears in Table 3. Criteria for high assurance could include independent supplier and
product assessments as well as demonstrations of that capability in the development of existing
products or systems.

CMU/SEI-2010-TN-026 | 18

Table 3: Levels of Assurance12
High Assurance Residual risks have been eliminated. There are no known failures.

Medium Assurance Known vulnerabilities have been addressed. Acquirer understands and accepts any
residual risks.

Low Assurance Designed for low risk and low consequent usage where failure can be tolerated.

4.2.3 System Development and Integration

Acquisition and risk management practices that rely solely on assessments of such products and
their suppliers overlook other key sources of risk in today’s environment, such as the changing
threat landscape and an increasing demand for leading-edge software with risks that are not well
understood. These risks should be analyzed from a systems perspective, which captures product
usage and consequences associated with supply chain risks.

Quite a few of the criteria for system developers are generalizations of the criteria for product
suppliers. However, the application of equivalent practices at a system level can be more
demanding. The criteria for development staff is a good example. Staff training for a product’s
development can concentrate on the development weaknesses appropriate to that supplier’s
domain and products. Development history usually identifies specific features that require
development staff guidance. A product developer normally manages a relatively small and stable
set of suppliers. In comparison, an integration contractor or system developer is likely doing
multiple one-off efforts across multiple functional domains and with differing sets of applicable
software products, suppliers, and subcontractors. It is relatively easy for a product developer to
maintain the required expertise given a relatively long product life. New employees can, over
time, be brought up the required level. Multiple one-off system developments, on the other hand,
require an established base of expertise in a wide spectrum of software weaknesses, threats, and
possible mitigations.

An acquirer should assess a contractor’s capability to
• analyze software risks associated with the use of commercial products. For example, what

access controls are available for the use of runtime customizations? An analysis of proposed
usage and a product’s attack surface can identify attack opportunities that require mitigations
beyond those provided by the product.

• manage risk associated with integration of components that have a lower level of assurance
than the desired system assurance level (see Table 3). Examples of this situation include the
use of legacy systems or of components designed for a different operational environment.

• perform system-level attack surface analysis and threat modeling or equivalent practices to
identify weaknesses related to how software components are used and integrated into the
system. For example, proposed usage of a commercial product may encounter operational
threats that were not considered by the external developers, or access controls for runtime
customizations may not be sufficient for business criticality. An analysis of a product’s
proposed usage and its attack surface can identify attack opportunities that require
mitigations beyond those provided by the product.

12 Drawn from Burton Group presentations and reports.

CMU/SEI-2010-TN-026 | 19

• maintain a staff that has a broad knowledge of exploitable software weaknesses and their
mitigation

• test for applicable system development and integration weaknesses as guided by the system’s
threat model

4.3 Acquirer Mitigations

An acquirer’s options for reducing the occurrence and impacts of software vulnerabilities depend
on both the acquisition context and the attack opportunities and motives. Acquirers may act to
prevent the insertion of vulnerabilities, recognize and reduce the impacts of latent vulnerabilities,
and ensure that the system can be used and sustained in a manner that does not introduce
additional supply chain risks.

For custom-developed systems, the most effective acquirer mitigation may be to monitor
emerging supply-chain risk during development. While a product with unacceptable risks can be
rejected, identification of unacceptable system risks late in a system development life cycle can
lead to an expensive redesign or, in the worst case, to the creation of expensive but unused
systems.

The development of a threat model and the results of attack surface analysis can guide an
acquirer’s review of system development activities. A threat model is initially very general and
may only note the sensitivity of information or criticality of usage. An acquirer should
periodically review threat model development with the supplier to focus attention on critical areas
of risk management:
• incorporation of the model in design and implementation, using the threat model to help

identify areas of uncertainty that could require additional defensive and recovery measures

• effects of tradeoff, design, and product selection decisions

• threat and risk guidance given to subcontractors and product developers

• product selection criteria based on the threat model and the acquirer’s risk profile

• use of the threat model to identify software weaknesses and mitigations that should be part of
a test plan

• mitigation of the risks of using leading-edge technology

4.4 Possible Tradeoffs

Developing a system with acceptable supply chain risks always involves tradeoffs. An effective
approach for software SCRM must target those risks that affect operational, mission, and business
objectives. It must also reflect priorities and resource constraints: not every SCRM practice can be
applied to every software component.

Some supply chain tradeoffs are associated with acquirer requirements. A simplified design to
reduce cost or speed delivery may not provide adequate mitigations for known operational risks.
Products that support end-user runtime customization provide that same capability to an attacker,
who could use it to adversely change the behavior of the software. The use of emerging
technologies with exploits that are not well understood increases operational risks. System

CMU/SEI-2010-TN-026 | 20

functionality may have to be changed or a higher risk accepted if mitigation costs for a desired
feature are too high or if residual risks for known mitigations are higher than anticipated.

Section 4.2.3 lists general supplier selection criteria for system development. Custom-system
development for an acquirer often involves a new use of a software system. A system that requires
leading-edge technologies or architectures creates a learning curve for both acquirer and
developer. Risks are not fully understood at the start of development. The ability of a contractor to
manage the dynamics of risk and communicate those issues to the acquirer is a critical selection
criterion.

To help resolve such tradeoffs, a system contractor should be able to
• provide a business justification for security by mapping threats to business assets

• discuss risks and tradeoffs during software development in a quantifiable way [McGovern
2010]

A system contractor’s ability to meet the above requirements depends on
• a characterization of an acquirer’s risk profile. The acquirer’s risk profile, the criticality of

usage, the scope of the desired functionality, and the potential integration difficulties should
guide the system design and specify product and supplier capability requirements.
Adherence to these requirements should be monitored and measured throughout the life
cycle.

• analysis that identifies supply chain risks and possible mitigations associated with system
integration and the use of externally developed software

Attack surface analysis is valuable in tradeoff discussions for the following reasons:
• A system with more targets, more enablers, more channels, or more generous access rights

provides more opportunities to attackers. An acquisition process designed to mitigate supply
chain security risks should include requirements for a reduced and documented attack surface.

• An acquirer can compare the security risks and functionality of specific product features.

• The attack surface can also be applied during operations to identify the attack opportunities
that could require additional mitigation beyond that provided by the product.

One challenging design tradeoff is between prevention and recovery. For example, which is better
for disk drive reliability: drives with better mean-time-failure specifications, or recovery
mechanisms that can swap out a faulty drive without affecting operations? Even with recovery,
drive quality must be balanced with recovery costs. The use of inexpensive, low-quality drives
may require additional drives to provide adequate redundancy, increasing the administrative costs
of replacing defective units.

For a number of reasons, recovery is an essential aspect of SCRM. Incorporating extensive
prevention mechanisms during development can increase complexity and hence risk. Risk
analysis cannot anticipate all possible failure conditions. For example, a commercial product may
be used in a high-risk military operational environment with threats not normally encountered in
the domestic environment for which the product was designed. Software recovery in these
instances often focuses on restoring a software service without an in-depth analysis of the cause,
but a successful recovery depends on controlling the propagation of the failure’s effects.

CMU/SEI-2010-TN-026 | 21

4.5 Limitations of Supply Chain Risk Management

An acquirer must be aware of the limitations of SCRM. Total prevention is not feasible because of
the sheer number of risks; limited supply chain visibility; uncertainty of product assurance; and
evolving nature of threats, usage, and product functionality. Often a system design incorporates
what is called defense in depth, or multiple mitigations for a risk, typically at different layers of
the architecture. For example, system defenses typically include a combination of network, host,
and application controls. System access could be a combination of software and physical controls
that implement an organizational policy. Additional mitigations do not necessarily reduce risk.
While defense in depth has been demonstrated to protect physical assets, its value for software
security has been questioned [Talbot 2010].13 For complex software systems with multiple
mitigations, we often do not understand how interactions among layers or an identified weakness
in a layered defense might reduce protection [Talbot 2010]. Such a lack of understanding
increases the likelihood during deployment that what are thought to be isolated changes have
adverse global effects.

13 Issues raised are consistent with proprietary Burton Group risk management reports based on field

observations.

CMU/SEI-2010-TN-026 | 22

CMU/SEI-2010-TN-026 | 23

5 Deployment and Operations

One software supply chain challenge during deployment is to ensure that as the threat
environment, usage scenarios, requirements, and components evolve, operational risks are
continually assessed and mitigated to ensure that operational objectives and assets are not placed
at risk. Commercial software components are commonly deployed for five years or longer, but
development design decisions and product selections are based on the data available at the time of
development. Assessments performed as part of the initial acquisition for a commercial
component are valid only at that time.

Some examples of risks that may emerge during deployment include the following:
• New attack techniques and software weaknesses may be discovered.

• Product upgrades that add features or change design can invalidate the results of prior risk
assessments and may introduce vulnerabilities.

• Corporate mergers, new subcontractors, or changes in corporate policies, staff training, or
software development processes may eliminate expected SCRM practices.

• Product criticality may increase with new or expanded usage.

The transition of a system from development to operations involves several aspects that require
careful planning:
• Risks that emerge during deployment in the evolving environment must be regularly

assessed. Knowledge of supply chain risks and tradeoff decisions encountered during
development must be transferred to the operational unit.

• System maintenance contractors must have the capability to identify and mitigate the
emergent supply chain risks as described in Section 3.

• System maintenance contractors must be knowledgeable of potential system weaknesses
identified during development and how those weaknesses have been mitigated. System
changes made without that knowledge can negate the effectiveness of existing mitigations.
This problem is not necessarily resolved by the development contractor continuing in a
maintenance role because maintenance may be transferred to a new team.

System development and integration deliverables should include a threat model and a summary of
attack surface analysis. The threat model should consider operational usage and threats. Threat
modeling supports development during deployment by identifying dependencies, trust boundaries,
and key design assumptions. This knowledge is essential to analyzing the impact of changes in
usage, threats, and software and to ensure that software upgrades are keeping pace with emerging
vulnerabilities. Such a threat model is particularly valuable when responsibility for a system is
transferred to a maintenance contractor or an internal unit within an organization. A threat model
can also guide requirements for service level agreements.

Software design and integration make assumptions about expected operational behavior. The
behavior of complex systems is difficult to model. Developers should not assume that threat
modeling is complete or without errors. Operational monitoring should log instances of
unexpected behavior, which could indicate invalid design assumptions or an exploited system.

CMU/SEI-2010-TN-026 | 24

CMU/SEI-2010-TN-026 | 25

6 Summary

This report considers risks associated with software defects created during development. Such
defects are often sufficient to compromise a system. For example, the malware that targeted
Siemens’ industrial control systems exploited software weaknesses in the Siemens software and in
the Windows operating system.

One goal of software SCRM is to assure that cyber attacks will not compromise operational
objectives. Achieving this goal requires a focus on reducing the prevalence of software errors that
can be exploited to gain unauthorized access, insert malware, or steal or modify critical data and
software programs. Robust software development practices can help, but, as noted in the
Introduction, software providers have not widely adopted these practices.

Security for application software is getting increased commercial attention, but, for a variety of
reasons, it is not widely practiced. A number of efforts are underway to identify criteria for a
security evaluation of commercial software products and their suppliers. A general reduction of
software defects that could affect product security is essential, but it provides only limited
assurance that all the defects that could affect a specific system have been mitigated. Tradeoffs in
requirements, component assurance, and costs associated with mitigating supply chain risks that
emerge during development should require acquirer concurrence.

In many instances, an acquirer’s management of software supply chain risk relies on contractors
for system development, integration, and deployment. With increasing system complexity and
malware sophistication, system contractors cannot assume that improved product assurance is
sufficient. Contracts for system development, integration, or deployment must include
requirements for SCRM, and acquirer selection criteria for such contracts must cover supply chain
management as well as supply chain risk and threat mitigation capabilities.

CMU/SEI-2010-TN-026 | 26

CMU/SEI-2010-TN-026 | 27

7 Next Steps

A key recommendation for acquirers and developers is to use a systematic process that leverages
threat and risk analysis for periodic risk identification and mitigation. A solid risk and threat
modeling approach will allow acquirers to sort through the plethora of recommendations in the
literature and select, apply, and monitor compliance with those recommendations most suited to
their own organization or system.

While this report introduced a simple framework that consisted of attack enablers and supplier
and acquirer mitigations of those enablers, more work is needed to develop useful tools that
facilitate the acquirer’s role. The SEI has work in progress that will enable acquirers to effectively
identify and mitigate supply chain risks, including
• tools and techniques to clarify the impacts of the software supply chain on operational

objectives and systems and to identify the supply chain risks that warrant application of
limited resources

• guidance and a framework for selecting and implementing the most promising software
SCRM practices

• methods for evaluating and measuring the implementation and effectiveness of SCRM
practices and for tracking supply chain risk trends

In addition, the current body of knowledge within the software supply chain domain consists of
experiential knowledge reported by a number of sources and codified in various technical reports
and presentations within the software assurance and acquisition communities. Supply chain in-
formation is often incomplete. There are no demonstrated leading-edge indicators of supply chain
assurance that support predictive models of supply chains delivering secure software. At this time,
a more rigorous development of the leading indicators of software supply chain security should
enable validation or rejection of such measures. It should also enable the construction of
predictive models of software supply chain security objectives.

An objective of future work is to build a foundation for longer-term data collection and analysis in
support of software assurance and supply chain standards activities. The results are also expected
to influence enhancements to training, processes, and regulations related to management of
software supply chain risk.

CMU/SEI-2010-TN-026 | 28

CMU/SEI-2010-TN-026 | 29

Bibliography

URLs are valid as of the publication date of this document.

[Alberts forthcoming]
Alberts, Christopher; Creel, Rita; Dorofee, Audrey; Ellison, Robert; & Woody, Carol.
A Systemic Approach for Assessing Software Supply-Chain Risk. Accepted for 44th
Hawaii International Conference on System Sciences. IEEE, forthcoming.

[Allen 2008]
Allen, Julia; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy. Software Security
Engineering: A Guide for Project Managers. Addison Wesley, 2008.

[Apple 2006]
Apple, Inc. “Small Number of Video iPods Shipped with Windows Virus.” Apple Support. Apple
Inc., 2006. http://www.apple.com/support/windowsvirus/

[Boyson 2009]
Boyson, Sandor; Corsi, Thomas; & Rossman, Hart. Building a Cyber Supply Chain Assurance
Reference Model. Science Applications International Corporation (SAIC), 2009.

[DHS 2009]
Department of Homeland Security. “Software Supply Chain Risk Management & Due-
Diligence.” Software Assurance Pocket Guide Series: Acquisition & Outsourcing, Volume II
Version 1.2. Department of Homeland Security, 2009. https://buildsecurityin.us-
cert.gov/swa/downloads/DueDiligenceMWV12_01AM090909.pdf

[DoD 2007]
Department of Defense. Report of the Defense Science Board Task Force on Mission Impact of
Foreign Influence on DoD Software. Office of the Under Secretary of Defense for Acquisition,
Technology, and Logistics, 2007.

[Ellison 2010a]
Ellison, Robert & Woody, Carol. “Considering Software Supply-Chain Risks.” CrossTalk 23, 5
(Sept.-Oct. 2010): 9-12.

[Ellison 2010b]
Ellison, Robert J.; Goodenough, John B.; Weinstock, Charles B.; & Woody, Carol. Evaluating
and Mitigating Software Supply Chain Security Risks (CMU/SEI-201-TN-016). Software
Engineering Institute, Carnegie Mellon University, 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tn016.cfm

[Ellison 2010c]
Ellison, Robert. Webinar: Securing Global Software Supply Chains. Software Engineering
Institute, Carnegie Mellon University, 2010.
http://www.sei.cmu.edu/library/abstracts/webinars/Securing-Global-Software-Supply-Chains.cfm

http://www.apple.com/support/windowsvirus/
https://buildsecurityin.us-cert.gov/swa/downloads/DueDiligenceMWV12_01AM090909.pdf
https://buildsecurityin.us-cert.gov/swa/downloads/DueDiligenceMWV12_01AM090909.pdf
https://buildsecurityin.us-cert.gov/swa/downloads/DueDiligenceMWV12_01AM090909.pdf
http://www.sei.cmu.edu/library/abstracts/reports/10tn016.cfm
http://www.sei.cmu.edu/library/abstracts/webinars/Securing-Global-Software-Supply-Chains.cfm

CMU/SEI-2010-TN-026 | 30

[Ellison 2010d]
Ellison, Robert & Woody, Carol. “Supply-Chain Risk Management: Incorporating Security into
Software Development.” Proceedings of the 43rd Hawaii International Conference on System
Sciences. Poipu, Kauai, HI, Jan. 2010. IEEE, 2010.

[Geer 2010]
Geer, David. “Are Companies Actually Using Secure Development Life Cycles?” Computer 43,
6, (June 2010): 12-16.

[Howard 2003]
Howard, Michael. Fending Off Future Attacks by Reducing Attack Surface. Microsoft, 2003.
http://msdn.microsoft.com/en-us/library/ms972812.aspx

[Howard 2005]
Howard, M.; Pincus, J.; & Wing, J.M. Ch. 8, “Measuring Relative Attack Surfaces,” 109-137.
Computer Security in the 21st Century, Lee/Shieh/Tygar, 2005. http://www-
2.cs.cmu.edu/afs/cs/usr/wing/www/publications/Howard-Wing05.pdf

[Howard 2006]
Howard, Michael & Lipner, Steve. The Security Development Lifecycle. Microsoft Press, 2006.

[Maier 1996]
Maier, M. “Architecting Principles for Systems-of-Systems,” 567-574. Proceedings of the Sixth
Annual International Symposium, International Council on Systems Engineering. Boston, MA,
July 1996. www.infoed.com/Open/PAPERS/systems.htm

[McGovern 2010]
McGovern, James & Peterson, Gunnar. “10 Quick, Dirty, and Cheap Things to Improve
Enterprise Security.” IEEE Security & Privacy 8, 2 (March-April 2010): 83-85.

[McGraw 2010a]
McGraw, Gary; Chess, Brian; & Migues, Sammy. The Building Security in Maturity Model,
BSIMM2. http://www.bsi-mm.com/ (2010).

[McGraw 2010b]
McGraw, Gary. “Software [In]security: How to p0wn a Control System with Stuxnet.” InformIT,
September 23, 2010. http://www.informit.com/articles/article.aspx?p=1636983

[Mills 2010]
Mills, Elinor. “Stuxnet: Fact vs. Theory.” CNET News. October 5, 2010.
http://news.cnet.com/8301-27080_3-20018530-245.html

[MITRE 2010a]
The MITRE Corporation. 2010 CWE/SANS Top 25 Most Dangerous Programming Errors.
http://cwe.mitre.org/top25/index.html (2010).

http://msdn.microsoft.com/en-us/library/ms972812.aspx
http://www-2.cs.cmu.edu/afs/cs/usr/wing/www/publications/Howard-Wing05.pdf
http://www-2.cs.cmu.edu/afs/cs/usr/wing/www/publications/Howard-Wing05.pdf
http://www.infoed.com/Open/PAPERS/systems.htm
http://www.bsi-mm.com/
http://www.informit.com/articles/article.aspx?p=1636983
http://news.cnet.com/8301-27080_3-20018530-245.html
http://cwe.mitre.org/top25/index.html

CMU/SEI-2010-TN-026 | 31

[MITRE 2010b]
The MITRE Corporation. Common Attack Pattern Enumeration and Classification (CAPEC).
http://capec.mitre.org/ (2010).

[MITRE 2010c]
The MITRE Corporation. Common Weakness Enumeration. http://cwe.mitre.org (2010).

[NIST 2010a]
National Institute of Standards and Technology. Piloting Supply Chain Risk Management
Practices for Federal Information Systems (Draft NIST Interagency Report 7622). NIST, 2010.
http://csrc.nist.gov/publications/drafts/nistir-7622/draft-nistir-7622.pdf

[NIST 2010b]
National Institute of Standards and Technology. The Technical Specification for the Security
Content Automation Protocol (SCAP): SCAP Version 1.1 (Special Publication 800-126 Revision
1, Second Public Draft). NIST, 2010.
http://csrc.nist.gov/publications/drafts/800-126-r1/second-public-draft_sp800-126r1-may2010.pdf

[OWASP 2010]
Open Web Applications Security Project. OWASP RFP-Criteria.
http://www.owasp.org/index.php/OWASP_RFP-Criteria (2010).

[Polydys 2008]
Polydys, Mary Linda & Wisseman, Stan. Software Assurance in Acquisition: Mitigating Risks to
the Enterprise. The Department of Defense (DOD) and Department of Homeland Security (DHS)
Software Assurance (SwA) Acquisition Working Group, 2008. https://buildsecurityin.us-
cert.gov/swa/downloads/SwA_in_Acquisition_102208.pdf

[Richmond 2010]
Richmond, Riva. “Malware Hits Computerized Industrial Equipment.” New York Times,
Technology, September 24, 2010. http://bits.blogs.nytimes.com/2010/09/24/malware-hits-
computerized-industrial-equipment/?scp=2&sq=control%20systems%20malware&st=cse

[Schwartz 2010]
Schwartz, Mathew J. “Hackers Deflate Auto Tire-Pressure Sensors.” InformationWeek, Aug. 12,
2010. http://www.informationweek.com/story/showArticle.jhtml?articleID=226700146

[Simpson 2008]
Simpson, Stacy, ed. Fundamental Practices for Secure Software Development: A Guide to the
Most Effective Secure Development Practices in Use Today. SAFECode, 2008.
http://www.safecode.org/publications/SAFECode_Dev_Practices1008.pdf

[Simpson 2009]
Simpson, Stacy, ed. The Software Supply Chain Integrity Framework: Defining Risks and
Responsibilities for Securing Software in the Global Supply Chain. SAFECode, 2009.
http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf

http://capec.mitre.org/
http://cwe.mitre.org
http://csrc.nist.gov/publications/drafts/nistir-7622/draft-nistir-7622.pdf
http://csrc.nist.gov/publications/drafts/800-126-r1/second-public-draft_sp800-126r1-may2010.pdf
http://www.owasp.org/index.php/OWASP_RFP-Criteria
https://buildsecurityin.us-cert.CMU/SEI-2010-TN-026
https://buildsecurityin.us-cert.CMU/SEI-2010-TN-026
https://buildsecurityin.us-cert.CMU/SEI-2010-TN-026
http://bits.blogs.nytimes.com/2010/09/24/malware-hits-computerized-industrial-equipment/?scp=2&sq=control%20systems%20malware&st=cse
http://bits.blogs.nytimes.com/2010/09/24/malware-hits-computerized-industrial-equipment/?scp=2&sq=control%20systems%20malware&st=cse
http://bits.blogs.nytimes.com/2010/09/24/malware-hits-computerized-industrial-equipment/?scp=2&sq=control%20systems%20malware&st=cse
http://www.informationweek.com/story/showArticle.jhtml?articleID=226700146
http://www.safecode.org/publications/SAFECode_Dev_Practices1008.pdf
http://www.safecode.org/publications/SAFECode_Supply_Chain0709.pdf

CMU/SEI-2010-TN-026 | 32

[Steven 2010]
Steven, John. “Threat Modeling–Perhaps It’s Time.” IEEE Security & Privacy 8, 3 (May-June
2010): pp. 83-86.

[Swiderski 2004]
Swiderski, Frank & Snyder, Window. Threat Modeling. Microsoft Press, 2004.

[Talbot 2010]
Talbot, E.B.; Frincke, D.; & Bishop, M. “Demythifying Cybersecurity.” IEEE Security & Privacy
8, 3 (May-June 2010): pp. 56-59.

[Veracode 2010]
Veracode. State of Software Security Report, Vol. 2. Veracode Inc., 2010.
http://www.veracode.com/reports/index.html

http://www.veracode.com/reports/index.html

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

December 2010

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Software Supply Chain Risk Management: From Products to Systems of Systems

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Robert Ellison, Christopher Alberts, Rita Creel, Audrey Dorofee, Carol Woody

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TN-026

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Supply chains are usually thought of as manufacturing and delivering physical items, but there are also supply chains associated with
the development and operation of a software system. Software supply chain research does not have decades of evidence to draw on, as
with physical-item supply chains. Taking a systems perspective on software supply chain risks, this report considers current practices in
software supply chain analysis and suggests some foundational practices. The product and supplier selection criteria for system
development depend on how a product is used in a system. While many of the criteria for the selection of product suppliers and system
development contractors are the same, there is also a significant difference between these kinds of acquisitions. Product development is
completed in advance of an acquirer’s product and supplier assessment. There is no guarantee that current supplier development
practices were used for a specific product. For custom system acquisitions, acquirers can and should actively monitor both contractor
and product supply chain risks during development. This report suggests contractor and acquirer activities that support the management
of supply chain risks.

14. SUBJECT TERMS

supply chain, vulnerabilities, secure software, threat modeling, attack surface, supplier
assessment, product assessment

15. NUMBER OF PAGES

45

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Software Supply Chain Risk Management: From Products to Systems of Systems
	Software Supply Chain Risk Management: From Products to Systems of Systems
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 Attack Analysis
	3 Suppliers
	4 Acquirers
	5 Deployment and Operations
	6 Summary
	7 Next Steps
	Bibliography

